A Transfer Learning Approach for Adaptive Classification in P300 Paradigms

نویسندگان

  • Vinay Jayaram
  • Moritz Grosse-Wentrup
چکیده

Introduction: The P300 is one of the most widely used brain responses in BCIs today, popularized by none other than the P300 speller itself. However, most systems still require significant subject-specific training to achieve accurate, reliable classification of brain signals. We present an approach to classification that allows for classification with zero subject-specific data and also improves as data is collected. It does this through the use of data from other subjects in order to intelligently regularize the subject-specific solution with a prior over the weight vector. This approach has already been validated on spectral data [1] and so by validating on P300 data as well we show that it is a classification technique that is agnostic to how features are computed from the EEG time series so long as there are multiple subjects or sessions involved. We further introduce a novel method for estimating parameters that drastically reduces the time necessary to implement transfer learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of a Green Familiar Faces Paradigm Improves P300-Speller Brain-Computer Interface Performance

BACKGROUND A recent study showed improved performance of the P300-speller when the flashing row or column was overlaid with translucent pictures of familiar faces (FF spelling paradigm). However, the performance of the P300-speller is not yet satisfactory due to its low classification accuracy and information transfer rate. OBJECTIVE To investigate whether P300-speller performance is further ...

متن کامل

A Probe into Adaptive Transfer across Writing Contexts: A Case of an EGAP Class

In an effort to expand the disciplinary discussions on transfer in L2 writing and because most studies have focused on transfer as reuse and not as an adequate adaptation of writing knowledge in new contexts, the present study as the first of its kind aimed to explore the issue of adaptive transfer in an English for General Academic Purposes (EGAP) writing course. The study thus focused on type...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

An Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach

Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...

متن کامل

Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.

OBJECTIVE Most BCIs have to undergo a calibration session in which data is recorded to train decoders with machine learning. Only recently zero-training methods have become a subject of study. This work proposes a probabilistic framework for BCI applications which exploit event-related potentials (ERPs). For the example of a visual P300 speller we show how the framework harvests the structure s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016